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Abstract 

 
In this paper we describe a way to create simple 3D 

shapes by interpreting freehand sketches drawn by the 

user. The user creates a polyloop by tracing a curve using 

a mouse. The curve is cleaned up by removing the non-

manifold points and hairs. The cleaned loops properly 

oriented to define the interior of the shape. We then 

distribute points in the interior of the shape, compute a 

triangulation of those points and finally bulge the shape 

using the ball transform to get a 3D shape. Our method 

allows arbitrary number of genus to be present in the 3D 

shape and is easily able to generate a variety of shapes. 
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Problem statement 
The aim of the project is to create a tool for drawing 

freehand curves representing shapes (polyloop curves) 

and then be able to inflate the loops into 3D surface. The 

application should automatically remove the non-

manifold points in the curve and present a set of 

polyloops to the user which are not self intersecting and 

at the same time similar to the shape which was intended 

by the user. The application then inflates or bulges the 

shape using the ball transform. It also produces a 

triangulation for the inflated shape using a variant of 

constrained Delaunay triangulation to represent the 3D 

shape intended by the freehand curve.  

Introduction 
There are many advanced software in the market which 

allows us to create complex and accurate 3D shapes. But 

most of involve selecting a primitive and the drawing that 

primitive. Our motivation towards developing this tool is 

to create a tool which may not produce very accurate 3D 

objects but is as intuitive as drawing shapes on a paper. 

There are many applications like animation, where 

accuracy may not be that important and our tool will give 

reasonable results. The advantage is that drawing simple 

shapes is almost as simple as drawing on a paper and the 

user doesn’t have to bother choosing primitive shapes or 

vertices.  

 

In our tool, we ask the user to draw freehand curve 

representing the boundary of the shape he intends to 

create. But user may draw a curve which may be self 

intersecting and might contain unwanted parts. Our tool 

cleans up the user curve and presents him a set of 

polyloops which do not contain any non-manifold point 

but tries to resemble as close as possible to the shape 

intended by the user. Once the user is happy with the 

loops we present him he can bulge the shape and create 

a 3D shape. We also calculate the triangle mesh of the 3D 

object which the user can save to a file and load into the 

mesh viewer to do other operations. 

Section I talks about the main algorithm used to reduce 

the user drawn curve (with non-manifold points) to a set 

of manifold polyloops with possibly holes. Section II 

describes the bulging algorithm. Section III describes the 

algorithm for generating a 3D triangle mesh for the 3D 

shape, Section IV consists of the helper algorithms used 

in section I,II and III  to solve this problem. Section V 

shows some results and shapes drawn through our 

application. Section VI concludes the paper some 

possible improvements. 

Section I 

Trimming: Cleaning up the freehand 

curve drawn by the user. 
 

We represent the user drawn curve using a set of 
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sampled vertices (P[ ]) in order. Each consecutive vertex 

in this array of points P[] represents an edge. The 

algorithm proceeds as follows: The sampled user curve is 

first cleaned up. It might happen that many vertices are 

very close to each other. The x,y co-ordinates of a group 

of vertices close to each other is set to a common (x,y) 

coordinate. Next we calculate the intersecting points of 

all edges and insert them in the array P[] using Algorithm 

1 and 2 in section IV. The intersection points are 

important because they help us identify the loops in the 

user drawn curve. We explicitly need to do this because 

while sampling the user drawn curve it is not guaranteed 

that the all intersecting point of the edges would be part 

of array P. (This is done by insertNonManifoldPts() in the 

accompanying code).We now create a new array of 

points GP[] from P such that no 2 vertices in GP are very 

close to each other. This is done by adding vertices to GP 

from P only if the new point to be added from P is not 

very close to an already existing point in GP. But the 

point to note is that now consecutive points in the array 

GP do not represent an edge. So we also maintain a list of 

valid edges GE[] as we add vertices from P to GP. Each 

element of GE stores the index of 2 vertices from GP to 

denote an edge. So we basically have a graph 

representation of the user drawn curve including all the 

intersecting point (non-manifold points). While creating 

the graph we take care not to insert duplicate edges or 

zero length edges in the array GE.  

Next we use the analogy of ‘sidewalks’ to identify loops 

in our graph. Let the edges of the polyloop represent 

roads. Now these roads might cross each other at 

crossings. Imagine that the road is composed of 2 

sidewalks on either side of itself. Therefore we model the 

edge as to having 2 sidewalks on the left side (ls) and 

right side (rs). Now identifying the loop is 

straightforward. Pick a sidewalk which is not covered and 

keep taking the next sidewalk without crossing the road 

(or in other words keep taking right turns at each 

crossing). When you come back to the point from where 

you stared you have a loop. While we traverse a sidewalk 

we also paint that sidewalk to denote that it has been 

covered. We use Algorithm 3 to identify the next 

sidewalk to be taken (or the next right turn). We keep 

generating loops till no sidewalk is left to be painted. If 

the starting sidewalk is clockwise we get an interior loop 

and if the starting sidewalk is clockwise then we get an 

exterior loop. 

  

The code snippet for finding loops is given below: 

void FindLoops(){ 
 for(int i=0;i<nGE;i++)// for each edge ini the graphs  
 { 
    if(GE[i].ls==0)// if left side walk is not yet painted  
    {  
      int ei=i,S,E; S=GE[ei].S; E=GE[ei].E;  
      LOOPS[nloops]=new Loop(); //create a new loop do{  
      LOOPS[nloops].Vi[LOOPS[nloops].nVi]=S;/*add the starting 

vertex of the sidewalk to the Loop */ 

      LOOPS[nloops].nVi++; int   

      rvi=getRightVertex(S,E);// get the next sidewalk  

      ei=getEdgeFromVertices(E,rvi);// get the edge index  

      if(ei==-1)// invalid edge  

       {nloops--;break;} 

      if(E==GE[ei].S)  

        {S=GE[ei].S;E=GE[ei].E;GE[ei].ls=nloops+1;}  

      else  

        {S=GE[ei].E;E=GE[ei].S;GE[ei].rs=nloops+1;}  

      if(S==GE[i].S&&E==GE[i].E)// detect the starting point 

         break;  

}while (true) 

 } 

 same thing is done for right sidewalks. ..... ....  

} 

Figure 1 : Sidewalks (red and green) around roads (edges of 
polyloop) 

Figure 2 : Illustrating a right turn at a non-manifold point to trace 
an inner loop, we take the Green path 
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So we have now identified all the loops L[] in our Graph 

GE or non-manifold polyloop. Each entry in the array L[] 

consists of ordered set of indices of vertex in 

GP[](defined earlier). Each consecutive index in L[i] 

represents an edge of the Loop L[i]. The last edge is 

formed by combining the last and first entry of L[i]. Now 

the problem boils down to removing loops from L[] in 

such a way that the final set of loops have a close 

resemblance with the original freehand shape drawn by 

the user and also does not contain any non-manifold 

point. We define a rule that the loop with the least 

absolute area is picked and if it has a non-manifold point 

it is deleted and the remaining loops and edge table GE 

are updated. We use algorithm 4 for computing the area 

of a polyloop and use its absolute value. But deletion of a 

loop may result in splitting up of already existing loops 

and addition of new edges. See Algorithm 5 in section IV  

for the details of how to delete a loop. We keep on 

deleting the loops till we reach a state when there are no 

non-manifold points left in the graph/loops. The 

motivation for choosing the smallest area is that in 

general the user would draw the intended part of the 

shape bigger than the unwanted part of the shape. 

 

Code Snippet for reducing a set of non-manifold loops to 

a set of manifold loops is given below: 

void ReduceToManifoldPoly() 
{  
 for(int i=0;i<nloops&&checkForNonManifoldPts()>0;i++) 
 { 
   int delLoopi=getMinLoopArea();    
   if(1!=CheckIfLoopIsNonManifold(delLoopi)) 
  {  
    LOOPS[delLoopi].done=1; 
    continue; 
  }  
LOOPS[delLoopi].done=1; 
 RemoveLoopsEdges(delLoopi);  
} 
 DrawFinalReducedPoly();  
}  

 

Figure 4: Result of Loop Deletion to remove non-manifold points 

For our loop removal algorithm, we are not only 

interested in the loop with the smallest area but it should 

also have a manifold point. If we do not do that we will 

be removing all the loops from the polyloop till we have 

just one loop left!  

For removing a loop we remove its entry from a Global 

Edge table which contains all the edges that form the 

polyloop. We remove the loop using Algorithm 5(section 

IV). Then we try to repair/ stitch-back the loops that were 

broken as we removed the edges of the smallest 

polyloop. 

Section II 

Bulge 
After trimming we are left with a set of clean manifold 

polyloops which represents the user intended shape. We 

would like to bulge this shape to produce a 3D shape. In 

order to do so we need to interpret the loops and 

identify the interior and exterior parts of the shape. Then 

we create a 3D point cloud (each point having x,y,z co-

ordinates)by sampling the interior of the shape which we 

call as Bulge. 

Overview of the Bulge algorithm is as follows: 

1) Identify the interior: Orient the loops (clockwise 

or anti-clockwise) so that the interior of the 

shape always lies towards the left of the oriented 

loop edge. 

2) Calculate Height Map: for the all the points (in 

2D) which lie in the interior of the shape we 

calculate the height at that point. 

3) Distribute Points inside the shape. 

4) Compute the Z-co-ordinate of the points added 

in step 3) using the height map computed in step 

2). The output of this step is the 3D point cloud 

Figure 3: Result of loop detection algorithm. For clarity, the loop 
encompassing the complete polyloop is not shown. 
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(bulge) which will be later triangulated in 

“Meshing”(described later). 

The details of the above steps follows: 

1) Identifying the interior: We orient the loops (output of 

the trimming step) such that the interior of the shape 

always lie to the left of an oriented loop edge. This can be 

done for a loop: LOOP[i] by computing the parity of the 

number of loops containing LOOP[i]. If the parity is odd 

then we orient the loop as clockwise else counter-

clockwise. Example, the parity for Loop ‘A’ in figure 5 is 

even so it will be oriented counter-clockwise. Loop ‘B’ 

(parity=odd) will be oriented clockwise and Loop ‘C’ 

counter-clockwise.(The green shaded region is the 

interior) 

 

Figure 5: Orienting the polyloops using parity. 

2) Calculating the Height Map: We have used the Ball 

transform (Figure 6) for calculating the height of each 

point in the interior of the shape which gives a smooth 

and bulging shape to the interior height map. 

Ball Transform: The height at a point ‘P’ inside the given 

shape ‘S’ is the maximum height at ‘P’ of all the semi-

spheres with base disk completely inside ‘S’. The 

algorithm for Bulge is given in section IV. 

 

Figure 6: Ball Transform 

3) Distributing Points inside the shape: 

for each edge: edge[i] 

{ 

 pt M=mid point of edge[i] 

 vec N=edge[i].left().unit(); 

 int foundedge=0; 

 for(j=0; foundedge==0&& j<BIGNUMBER;j++) 

 { 

  pt R= (M.x+N.x*j,M.y+N.y*j);// move R along the normal //from    

 the mid of the edge. 

  for each edge: edge[k] 

  if(M.disTo(R)>= edge[k].disToPt(R)) 

  { 

   foundedge=1; 

   //Now Add vertices along the line segment ‘M’ to ‘R’ using the   

   //formula: pt(M.x+N.x*d,M.y+N.y*d) 

   for(float a=astartval;a<3.14f/2;a+=aincrementval) 

   { 

    float d=minD*(1-cos(a)); 

    appendVertex(new pt(M.x+N.x*d,M.y+N.y*d)); 

   } 

   appendVertex(R);  

   break; 

  } 

 } 

} 

Here we can control the number of points added by 

changing the variable aincrementval. If it is smaller you will 

get more points. The algorithm can be visualized by 

means of figure 7 

 

Figure 7: Computing new points in the polyloop interior. 

Though the above approach gives us a uniform points 

distribution in case of convex polyloops, it leaves some 

areas without any points around concave vertices of the 

polyloop. To address that we can add vertices along the 
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fan of normals emerging from the concave vertex as 

shown in figure 8: 

 

Figure 8: Handling concave vertices. 

4) Compute the Z-co-ordinate of the point cloud: Once 

we have the height map and the set of points, the z-

coordinate of a point ‘P’ is simply the height at point ‘P’ 

in the heightmap. 

Now we have a point cloud and a list of edges which we 

will triangulate as described in the next section. 

 
Section III 

Meshing 
Meshing here refers to the triangulation of the bulge we 

have previously calculated.  Our input is the set of 3D 

point cloud (we do not consider the height information of 

the points as the point cloud was sampled taking the 

bulge height into consideration) and the edges of the 

oriented manifold loops.  

INPUT:  

i) GT[]: The 3D point cloud where each entry in 

GT stores the corresponding x,y,z co-ordinate 

of a vertex in the 3D point cloud. 

ii) edge[]:We extract the edge information from 

the oriented loops and fill it in a common 

array edge[]. Here each entry has a 

starting(S) and an ending vertex (E) index 

denoting an edge. The corresponding co-

ordinate of the starting and ending point of 

this edge is found by indexing S and E into 

GT*+. We also keep a marker (“used” field) for 

each edge to remember if we have already 

used that edge for the triangulation process. 

OUTPUT: 

i) V[]: The V-table represents the triangulation of the 

point cloud. Each set of consecutive 3 rows stores the 

vertex index of each of the 3 corners of a triangle. 

ii)nV: (number of triangles)*3 

The algorithm for computing the triangle mesh is as 

follows: 

for each edge in edge[] 

 if(edge[i].used==false) 

 { 

  edge[i].used=true; 

  pt M=mid point of the edge; 

  vec N= unit normal to edge; 

 float R=Choose a Radius starting from –ve infinity (just a            

 big number) 

 while(!(found a 3
rd

 point for triangulation)) 

 { 

  pt O= (M.x+R*N.x,M.y+R*N.y);// center of the disk    

  //moving along ‘N’ towards edge[i]. Note that here starting  

 //value of ‘R’ is negative.e 

  R+=.1;// move the center towards the edge 

  for each vertex index ‘k’  

  { 

  if(k==edge[i].S||k==edge[i].E) continue;  

  else 

  { 

   if(dot(M.makeVecTo(GT[k]),N)>ZERO      

  &&GT[k].disTo(O)<=GT[edge[i].S].disTo(O)) 

  { 

    set the flag that we found the 3
rd

 point for        

    triangluation. 

 

    // Now add the other 2 edges of the triangle. 

   appendEdge(edge[i].S,k);  

   appendEdge(k,edge[i].E); 

 

   Remove any hairs. We do this by checking for duplicate  

  edges and removing both the instances. 

 

   // Now add the 3 rows of vertex indices representing      

   //the triangle in the ‘V’ table in the proper order. 

   V[nV++]=edge[i].S;  

   V[nV++]=edge[i].E; 

   V[nV++]=k; 

   break; 

   }// end if 

   }//end else 

  }//end for 

 }//end while 
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} 

}// end if 

The algorithm can be visualised by means of figure 9. 

Here we move a disk from infinity along the outward 

normal of the edge (starting point of the normal is the 

mid-point of the edge) so that it touches one more point 

in addition to the 2 vertices of the edge. This basically 

amounts to fitting a circumcircle for 3 points so that no 

other point of the point cloud is inside this circle. 

 

Figure 9: Fitting the circumcircle to 2 points 

 

The mesh that is generated is not closed (open from the 

bottom). We want to close the mesh so we simply take 

the mirror of the top and create the bottom half of the 

mesh as shown in figure 10 

 

Figure 10: Creating the mirror image of the polyloop mesh. 

 

Section IV 

Algorithm 1 

Algorithm to determine if two line segments 

intersect each other 

Consider 2 line segments AB and PQ. They intersect each 

other if and only if, for both the line segments, the end 

points of one line segment are not on the same side of 

the other line segment. 

Mathematically,  

𝑠𝑔𝑛  𝐴𝑄.        𝑙𝑒𝑓𝑡 𝐴𝐵        ≠ 𝑠𝑔𝑛(𝐴𝑃.       𝑙𝑒𝑓𝑡 𝐴𝐵       )  

and vice-versa. 

Algorithm 2 

Algorithm to determine point of intersection of 2 

lines [1] 

Let the equation of the lines be 

 𝑃    = 𝑃0
     + 𝜇 𝑃0

     − 𝑃1
      , and  

 𝑃    = 𝑄0
     + 𝛾 𝑄0

     − 𝑄1
       

Let 𝑃   be the point of intersection of 2 lines and  

𝑁    be the normal such that 𝑁    .  𝑄0
     − 𝑃   = 0. 

Solving the line equations simultaneously and solving for 

𝜇, we get 

𝜇 =
𝑁   .  𝑄0 − 𝑃0 

𝑁   .  𝑃1 − 𝑃0 
 

Therefore the point of intersection 𝑃   is given by 

 𝑃    = 𝑃0
     +

𝑁   .  𝑄0 − 𝑃0 

𝑁   .  𝑃1 − 𝑃0 
 𝑃0
     − 𝑃1

      

Algorithm 3 

Algorithm to determine the rightmost turn from a 

non-manifold point 

Consider a non-manifold point P. Let AP be an incident 

edge at P and PQi be emerging edges from P. To 

determine the rightmost turn from AP, we first compute 

Q0 
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the slope of AP and then the slope of each PQi. Using the 

slope, compute the angle between 0 to 2π for the slope. 

Then we compute the difference between the angles 

formed by AP and the horizontal axis and PQi and the 

horizontal axis. The value of i for which PQi gives us the 

minimum difference with respect to the edge AP gives us 

the right turn vertex from AP. 

Algorithm 4 

Algorithm to determine the area of a polyloop [2] 

Consider a polyloop made of a set of edges Ei. To 

compute the area of the polyloop we consider the signed 

area under formed by the trapezium made by an edge 

and the reference axis under it. 

 

Figure 11: Calculating area of a trapezium 

We add up all the areas along with the sign to get a 

signed area. Note that the area will come out to be 

positive if our polyloop was oriented in a clockwise 

manner. For our purpose we take the absolute value of 

the area as a measure of the size of the polyloop. 

Algorithm 5 

Algorithm to remove non-manifold loops from a 

polyloop 

Consider a polyloop (non-manifold) which has a loop to 

be removed. The loop has at least one non-manifold 

point as shown. 

We maintain a global edge table (GE) which keeps track 

of all the valid edges remaining in the polyloop.

  

When we delete a loop Li, we simply remove the 

corresponding edges of Li from GE. The length of Loop Li 

is marked as 0 so that in future it is not considered 

anymore in the algorithm.  

Now we patch-up or stitch the remaining loops. For doing 

that, we observe that when we remove a set of edges 

from the polyloop, all the other loops: 

a) Would not be affected as they didn’t share any 

vertex (or they share a single vertex but no edge) 

with the deleted polyloop. So these loops need 

not be processed. 

b) Or will have some vertices common with the 

removed loop and hence will be broken into 

Figure 13: Removal of a loop, manifold point + smallest area 

Figure 12: Illustrating a right turn at a non-manifold point. Green 
line represents the path taken (PQ0). 

A 

P 

Q0 

Q1 

Q2 



 Page 8 
 

c) newer loops and open ends joined. We use the 

following approach to break these loops into new 

loops:  

 

The edges of the loop Lj which has to be stitched are 

marked as true (T) or false (F) based on the updated GE. 

Now we have connected series of ‘F’s and ‘T’s. We simply 

throw away this loop and create new loops out of a series 

of connected ‘T’s. 

 

Algorithm 6 

Algorithm to compute the height map using the 

ball transform [2] 

 
void ballTransform() { 

for each point P(x,y) in the plane 

 if (P(x,y is inside the shape ‘S’){ 

/*update the height map for the sphere with center P(x,y) and radius = 

P(x,y).disToclosestEdgeIn(S)*/ 

scanSphere(P(x,y),P(x,y).disToclosestEdgeIn(S)); 

}} 

void scanSphere(pt O, float r) 

{ 

 for each point ‘SP’ in the disc with center =O and   

 radius ‘r’ 

 {  

   if(height at ‘SP’ of sphere with center O and radius r    

    is > the height in the height map) 

   {  

     Make the height of heightmap at SP= height at ‘SP’   

     of sphere with center O and radius r; 

   } 

  } 

} 

Section V 

In this section we show a sample shape which was drawn 

using the above approach. Each of the following figures 

show the intermediate state followed by the final 3D 

triangle Mesh. 

 

Figure 15: User Draws Curve 

 

 

Figure 16: After Trimming we have manifold polyloops. 

 

 

 

Figure 17: Intermediate step of Meshing of the point distribution. 
The black edges are not yet used and the red ones have been used 

for triangulation 

Figure 14: Figures showing the stitching rule for broken 
loops. The loops are represented by the series TTF and 
TTTFTTTF. When we re-stitch the loops, we remove the F 
edges and obtain a loop with TT_ and TTT_ and TTT_ 
where _ represents a new edge inserted to complete the 
loop. 

T 

T 

F T 

F 

F 

T 

T 

T 

T 

T 
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Figure 18: Ball Transform 

  

 

Figure 19: Final 3D Mesh formed by combining Ball transform and 
point distribution 

 
 

Section VI 

Conclusion: 
By this implementation, we have provided the user with 

an easy and an intuitive way to create 3D shapes from 

simple 2D curves. The user also has the flexibility to 

create non-connected 2D curves which can be used to 

create multiple 3D shapes (including Genus). 

Our polyloop stitching algorithm preserves more holes 

than the algorithm that was originally suggested in class 

for implementation. It does have a drawback in the sense 

that it doesn’t preserve the parity of the loops, but for 

the current application, that doesn’t matter too much. 

The triangulation algorithm functions well for most cases 

and produces reasonably good results for concave 

vertices too. But it has a drawback of taking a long time 

to complete. A suitable modification for improving the 

speed and hence the efficiency of the procedure can be 

taken up as future work. 

The bulge method produces good approximation of the 

3D surface with a very simple algorithm. It can be further 

improved by considering triangles instead of squares or 

grids to compute the height of a particular point. 

As an extension to this project we can generate the 

corner table out of the triangle mesh and allow the user 

do smoothing, subdividing and various other operations 

on the mesh.  

Improvements: 
 The algorithms that are being used by us are not 

optimized as of now. Consequently they take a 

lot of time to process and display the 

triangulation.  

 There is no UI for the user to change the 

parameters for re-sampling and the size of the 

triangulation. But this is just a UI limitation and is 

possible with the current code by changing the 

variable in the accompanying code 

 We could also try to triangulate the mesh in 3D. 
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