
 Page 1

A Tool for Quick freehand drawing of 3D
shapes on the Computer

Rohit Sud (rohit@gatech.edu) and Abhishek Venkatesh (venky@gatech.edu)

College of Computing, Georgia Institute of Technology, Atlanta GA

Abstract

In this paper we describe a way to create simple 3D

shapes by interpreting freehand sketches drawn by the

user. The user creates a polyloop by tracing a curve using

a mouse. The curve is cleaned up by removing the non-

manifold points and hairs. The cleaned loops properly

oriented to define the interior of the shape. We then

distribute points in the interior of the shape, compute a

triangulation of those points and finally bulge the shape

using the ball transform to get a 3D shape. Our method

allows arbitrary number of genus to be present in the 3D

shape and is easily able to generate a variety of shapes.

Keywords
Curves, Smoothing, sidewalks, graph, Delaunay

triangulation, bulge, trimming, meshing, corner table.

Problem statement
The aim of the project is to create a tool for drawing

freehand curves representing shapes (polyloop curves)

and then be able to inflate the loops into 3D surface. The

application should automatically remove the non-

manifold points in the curve and present a set of

polyloops to the user which are not self intersecting and

at the same time similar to the shape which was intended

by the user. The application then inflates or bulges the

shape using the ball transform. It also produces a

triangulation for the inflated shape using a variant of

constrained Delaunay triangulation to represent the 3D

shape intended by the freehand curve.

Introduction
There are many advanced software in the market which

allows us to create complex and accurate 3D shapes. But

most of involve selecting a primitive and the drawing that

primitive. Our motivation towards developing this tool is

to create a tool which may not produce very accurate 3D

objects but is as intuitive as drawing shapes on a paper.

There are many applications like animation, where

accuracy may not be that important and our tool will give

reasonable results. The advantage is that drawing simple

shapes is almost as simple as drawing on a paper and the

user doesn’t have to bother choosing primitive shapes or

vertices.

In our tool, we ask the user to draw freehand curve

representing the boundary of the shape he intends to

create. But user may draw a curve which may be self

intersecting and might contain unwanted parts. Our tool

cleans up the user curve and presents him a set of

polyloops which do not contain any non-manifold point

but tries to resemble as close as possible to the shape

intended by the user. Once the user is happy with the

loops we present him he can bulge the shape and create

a 3D shape. We also calculate the triangle mesh of the 3D

object which the user can save to a file and load into the

mesh viewer to do other operations.

Section I talks about the main algorithm used to reduce

the user drawn curve (with non-manifold points) to a set

of manifold polyloops with possibly holes. Section II

describes the bulging algorithm. Section III describes the

algorithm for generating a 3D triangle mesh for the 3D

shape, Section IV consists of the helper algorithms used

in section I,II and III to solve this problem. Section V

shows some results and shapes drawn through our

application. Section VI concludes the paper some

possible improvements.

Section I

Trimming: Cleaning up the freehand

curve drawn by the user.

We represent the user drawn curve using a set of

mailto:rohit@gatech.edu
mailto:venky@gatech.edu

 Page 2

sampled vertices (P[]) in order. Each consecutive vertex

in this array of points P[] represents an edge. The

algorithm proceeds as follows: The sampled user curve is

first cleaned up. It might happen that many vertices are

very close to each other. The x,y co-ordinates of a group

of vertices close to each other is set to a common (x,y)

coordinate. Next we calculate the intersecting points of

all edges and insert them in the array P[] using Algorithm

1 and 2 in section IV. The intersection points are

important because they help us identify the loops in the

user drawn curve. We explicitly need to do this because

while sampling the user drawn curve it is not guaranteed

that the all intersecting point of the edges would be part

of array P. (This is done by insertNonManifoldPts() in the

accompanying code).We now create a new array of

points GP[] from P such that no 2 vertices in GP are very

close to each other. This is done by adding vertices to GP

from P only if the new point to be added from P is not

very close to an already existing point in GP. But the

point to note is that now consecutive points in the array

GP do not represent an edge. So we also maintain a list of

valid edges GE[] as we add vertices from P to GP. Each

element of GE stores the index of 2 vertices from GP to

denote an edge. So we basically have a graph

representation of the user drawn curve including all the

intersecting point (non-manifold points). While creating

the graph we take care not to insert duplicate edges or

zero length edges in the array GE.

Next we use the analogy of ‘sidewalks’ to identify loops

in our graph. Let the edges of the polyloop represent

roads. Now these roads might cross each other at

crossings. Imagine that the road is composed of 2

sidewalks on either side of itself. Therefore we model the

edge as to having 2 sidewalks on the left side (ls) and

right side (rs). Now identifying the loop is

straightforward. Pick a sidewalk which is not covered and

keep taking the next sidewalk without crossing the road

(or in other words keep taking right turns at each

crossing). When you come back to the point from where

you stared you have a loop. While we traverse a sidewalk

we also paint that sidewalk to denote that it has been

covered. We use Algorithm 3 to identify the next

sidewalk to be taken (or the next right turn). We keep

generating loops till no sidewalk is left to be painted. If

the starting sidewalk is clockwise we get an interior loop

and if the starting sidewalk is clockwise then we get an

exterior loop.

The code snippet for finding loops is given below:

void FindLoops(){
 for(int i=0;i<nGE;i++)// for each edge ini the graphs
 {
 if(GE[i].ls==0)// if left side walk is not yet painted
 {
 int ei=i,S,E; S=GE[ei].S; E=GE[ei].E;
 LOOPS[nloops]=new Loop(); //create a new loop do{
 LOOPS[nloops].Vi[LOOPS[nloops].nVi]=S;/*add the starting

vertex of the sidewalk to the Loop */

 LOOPS[nloops].nVi++; int

 rvi=getRightVertex(S,E);// get the next sidewalk

 ei=getEdgeFromVertices(E,rvi);// get the edge index

 if(ei==-1)// invalid edge

 {nloops--;break;}

 if(E==GE[ei].S)

 {S=GE[ei].S;E=GE[ei].E;GE[ei].ls=nloops+1;}

 else

 {S=GE[ei].E;E=GE[ei].S;GE[ei].rs=nloops+1;}

 if(S==GE[i].S&&E==GE[i].E)// detect the starting point

 break;

}while (true)

 }

 same thing is done for right sidewalks.

}

Figure 1 : Sidewalks (red and green) around roads (edges of
polyloop)

Figure 2 : Illustrating a right turn at a non-manifold point to trace
an inner loop, we take the Green path

 Page 3

So we have now identified all the loops L[] in our Graph

GE or non-manifold polyloop. Each entry in the array L[]

consists of ordered set of indices of vertex in

GP[](defined earlier). Each consecutive index in L[i]

represents an edge of the Loop L[i]. The last edge is

formed by combining the last and first entry of L[i]. Now

the problem boils down to removing loops from L[] in

such a way that the final set of loops have a close

resemblance with the original freehand shape drawn by

the user and also does not contain any non-manifold

point. We define a rule that the loop with the least

absolute area is picked and if it has a non-manifold point

it is deleted and the remaining loops and edge table GE

are updated. We use algorithm 4 for computing the area

of a polyloop and use its absolute value. But deletion of a

loop may result in splitting up of already existing loops

and addition of new edges. See Algorithm 5 in section IV

for the details of how to delete a loop. We keep on

deleting the loops till we reach a state when there are no

non-manifold points left in the graph/loops. The

motivation for choosing the smallest area is that in

general the user would draw the intended part of the

shape bigger than the unwanted part of the shape.

Code Snippet for reducing a set of non-manifold loops to

a set of manifold loops is given below:

void ReduceToManifoldPoly()
{
 for(int i=0;i<nloops&&checkForNonManifoldPts()>0;i++)
 {
 int delLoopi=getMinLoopArea();
 if(1!=CheckIfLoopIsNonManifold(delLoopi))
 {
 LOOPS[delLoopi].done=1;
 continue;
 }
LOOPS[delLoopi].done=1;
 RemoveLoopsEdges(delLoopi);
}
 DrawFinalReducedPoly();
}

Figure 4: Result of Loop Deletion to remove non-manifold points

For our loop removal algorithm, we are not only

interested in the loop with the smallest area but it should

also have a manifold point. If we do not do that we will

be removing all the loops from the polyloop till we have

just one loop left!

For removing a loop we remove its entry from a Global

Edge table which contains all the edges that form the

polyloop. We remove the loop using Algorithm 5(section

IV). Then we try to repair/ stitch-back the loops that were

broken as we removed the edges of the smallest

polyloop.

Section II

Bulge
After trimming we are left with a set of clean manifold

polyloops which represents the user intended shape. We

would like to bulge this shape to produce a 3D shape. In

order to do so we need to interpret the loops and

identify the interior and exterior parts of the shape. Then

we create a 3D point cloud (each point having x,y,z co-

ordinates)by sampling the interior of the shape which we

call as Bulge.

Overview of the Bulge algorithm is as follows:

1) Identify the interior: Orient the loops (clockwise

or anti-clockwise) so that the interior of the

shape always lies towards the left of the oriented

loop edge.

2) Calculate Height Map: for the all the points (in

2D) which lie in the interior of the shape we

calculate the height at that point.

3) Distribute Points inside the shape.

4) Compute the Z-co-ordinate of the points added

in step 3) using the height map computed in step

2). The output of this step is the 3D point cloud

Figure 3: Result of loop detection algorithm. For clarity, the loop
encompassing the complete polyloop is not shown.

 Page 4

(bulge) which will be later triangulated in

“Meshing”(described later).

The details of the above steps follows:

1) Identifying the interior: We orient the loops (output of

the trimming step) such that the interior of the shape

always lie to the left of an oriented loop edge. This can be

done for a loop: LOOP[i] by computing the parity of the

number of loops containing LOOP[i]. If the parity is odd

then we orient the loop as clockwise else counter-

clockwise. Example, the parity for Loop ‘A’ in figure 5 is

even so it will be oriented counter-clockwise. Loop ‘B’

(parity=odd) will be oriented clockwise and Loop ‘C’

counter-clockwise.(The green shaded region is the

interior)

Figure 5: Orienting the polyloops using parity.

2) Calculating the Height Map: We have used the Ball

transform (Figure 6) for calculating the height of each

point in the interior of the shape which gives a smooth

and bulging shape to the interior height map.

Ball Transform: The height at a point ‘P’ inside the given

shape ‘S’ is the maximum height at ‘P’ of all the semi-

spheres with base disk completely inside ‘S’. The

algorithm for Bulge is given in section IV.

Figure 6: Ball Transform

3) Distributing Points inside the shape:

for each edge: edge[i]

{

 pt M=mid point of edge[i]

 vec N=edge[i].left().unit();

 int foundedge=0;

 for(j=0; foundedge==0&& j<BIGNUMBER;j++)

 {

 pt R= (M.x+N.x*j,M.y+N.y*j);// move R along the normal //from

 the mid of the edge.

 for each edge: edge[k]

 if(M.disTo(R)>= edge[k].disToPt(R))

 {

 foundedge=1;

 //Now Add vertices along the line segment ‘M’ to ‘R’ using the

 //formula: pt(M.x+N.x*d,M.y+N.y*d)

 for(float a=astartval;a<3.14f/2;a+=aincrementval)

 {

 float d=minD*(1-cos(a));

 appendVertex(new pt(M.x+N.x*d,M.y+N.y*d));

 }

 appendVertex(R);

 break;

 }

 }

}

Here we can control the number of points added by

changing the variable aincrementval. If it is smaller you will

get more points. The algorithm can be visualized by

means of figure 7

Figure 7: Computing new points in the polyloop interior.

Though the above approach gives us a uniform points

distribution in case of convex polyloops, it leaves some

areas without any points around concave vertices of the

polyloop. To address that we can add vertices along the

 Page 5

fan of normals emerging from the concave vertex as

shown in figure 8:

Figure 8: Handling concave vertices.

4) Compute the Z-co-ordinate of the point cloud: Once

we have the height map and the set of points, the z-

coordinate of a point ‘P’ is simply the height at point ‘P’

in the heightmap.

Now we have a point cloud and a list of edges which we

will triangulate as described in the next section.

Section III

Meshing
Meshing here refers to the triangulation of the bulge we

have previously calculated. Our input is the set of 3D

point cloud (we do not consider the height information of

the points as the point cloud was sampled taking the

bulge height into consideration) and the edges of the

oriented manifold loops.

INPUT:

i) GT[]: The 3D point cloud where each entry in

GT stores the corresponding x,y,z co-ordinate

of a vertex in the 3D point cloud.

ii) edge[]:We extract the edge information from

the oriented loops and fill it in a common

array edge[]. Here each entry has a

starting(S) and an ending vertex (E) index

denoting an edge. The corresponding co-

ordinate of the starting and ending point of

this edge is found by indexing S and E into

GT*+. We also keep a marker (“used” field) for

each edge to remember if we have already

used that edge for the triangulation process.

OUTPUT:

i) V[]: The V-table represents the triangulation of the

point cloud. Each set of consecutive 3 rows stores the

vertex index of each of the 3 corners of a triangle.

ii)nV: (number of triangles)*3

The algorithm for computing the triangle mesh is as

follows:

for each edge in edge[]

 if(edge[i].used==false)

 {

 edge[i].used=true;

 pt M=mid point of the edge;

 vec N= unit normal to edge;

 float R=Choose a Radius starting from –ve infinity (just a

 big number)

 while(!(found a 3
rd

 point for triangulation))

 {

 pt O= (M.x+R*N.x,M.y+R*N.y);// center of the disk

 //moving along ‘N’ towards edge[i]. Note that here starting

 //value of ‘R’ is negative.e

 R+=.1;// move the center towards the edge

 for each vertex index ‘k’

 {

 if(k==edge[i].S||k==edge[i].E) continue;

 else

 {

 if(dot(M.makeVecTo(GT[k]),N)>ZERO

 &>[k].disTo(O)<=GT[edge[i].S].disTo(O))

 {

 set the flag that we found the 3
rd

 point for

 triangluation.

 // Now add the other 2 edges of the triangle.

 appendEdge(edge[i].S,k);

 appendEdge(k,edge[i].E);

 Remove any hairs. We do this by checking for duplicate

 edges and removing both the instances.

 // Now add the 3 rows of vertex indices representing

 //the triangle in the ‘V’ table in the proper order.

 V[nV++]=edge[i].S;

 V[nV++]=edge[i].E;

 V[nV++]=k;

 break;

 }// end if

 }//end else

 }//end for

 }//end while

 Page 6

}

}// end if

The algorithm can be visualised by means of figure 9.

Here we move a disk from infinity along the outward

normal of the edge (starting point of the normal is the

mid-point of the edge) so that it touches one more point

in addition to the 2 vertices of the edge. This basically

amounts to fitting a circumcircle for 3 points so that no

other point of the point cloud is inside this circle.

Figure 9: Fitting the circumcircle to 2 points

The mesh that is generated is not closed (open from the

bottom). We want to close the mesh so we simply take

the mirror of the top and create the bottom half of the

mesh as shown in figure 10

Figure 10: Creating the mirror image of the polyloop mesh.

Section IV

Algorithm 1

Algorithm to determine if two line segments

intersect each other

Consider 2 line segments AB and PQ. They intersect each

other if and only if, for both the line segments, the end

points of one line segment are not on the same side of

the other line segment.

Mathematically,

𝑠𝑔𝑛 𝐴𝑄. 𝑙𝑒𝑓𝑡 𝐴𝐵 ≠ 𝑠𝑔𝑛(𝐴𝑃. 𝑙𝑒𝑓𝑡 𝐴𝐵)

and vice-versa.

Algorithm 2

Algorithm to determine point of intersection of 2

lines [1]

Let the equation of the lines be

 𝑃 = 𝑃0
 + 𝜇 𝑃0

 − 𝑃1
 , and

 𝑃 = 𝑄0
 + 𝛾 𝑄0

 − 𝑄1

Let 𝑃 be the point of intersection of 2 lines and

𝑁 be the normal such that 𝑁 . 𝑄0
 − 𝑃 = 0.

Solving the line equations simultaneously and solving for

𝜇, we get

𝜇 =
𝑁 . 𝑄0 − 𝑃0

𝑁 . 𝑃1 − 𝑃0

Therefore the point of intersection 𝑃 is given by

 𝑃 = 𝑃0
 +

𝑁 . 𝑄0 − 𝑃0

𝑁 . 𝑃1 − 𝑃0
 𝑃0
 − 𝑃1

Algorithm 3

Algorithm to determine the rightmost turn from a

non-manifold point

Consider a non-manifold point P. Let AP be an incident

edge at P and PQi be emerging edges from P. To

determine the rightmost turn from AP, we first compute

Q0

 Page 7

the slope of AP and then the slope of each PQi. Using the

slope, compute the angle between 0 to 2π for the slope.

Then we compute the difference between the angles

formed by AP and the horizontal axis and PQi and the

horizontal axis. The value of i for which PQi gives us the

minimum difference with respect to the edge AP gives us

the right turn vertex from AP.

Algorithm 4

Algorithm to determine the area of a polyloop [2]

Consider a polyloop made of a set of edges Ei. To

compute the area of the polyloop we consider the signed

area under formed by the trapezium made by an edge

and the reference axis under it.

Figure 11: Calculating area of a trapezium

We add up all the areas along with the sign to get a

signed area. Note that the area will come out to be

positive if our polyloop was oriented in a clockwise

manner. For our purpose we take the absolute value of

the area as a measure of the size of the polyloop.

Algorithm 5

Algorithm to remove non-manifold loops from a

polyloop

Consider a polyloop (non-manifold) which has a loop to

be removed. The loop has at least one non-manifold

point as shown.

We maintain a global edge table (GE) which keeps track

of all the valid edges remaining in the polyloop.

When we delete a loop Li, we simply remove the

corresponding edges of Li from GE. The length of Loop Li

is marked as 0 so that in future it is not considered

anymore in the algorithm.

Now we patch-up or stitch the remaining loops. For doing

that, we observe that when we remove a set of edges

from the polyloop, all the other loops:

a) Would not be affected as they didn’t share any

vertex (or they share a single vertex but no edge)

with the deleted polyloop. So these loops need

not be processed.

b) Or will have some vertices common with the

removed loop and hence will be broken into

Figure 13: Removal of a loop, manifold point + smallest area

Figure 12: Illustrating a right turn at a non-manifold point. Green
line represents the path taken (PQ0).

A

P

Q0

Q1

Q2

 Page 8

c) newer loops and open ends joined. We use the

following approach to break these loops into new

loops:

The edges of the loop Lj which has to be stitched are

marked as true (T) or false (F) based on the updated GE.

Now we have connected series of ‘F’s and ‘T’s. We simply

throw away this loop and create new loops out of a series

of connected ‘T’s.

Algorithm 6

Algorithm to compute the height map using the

ball transform [2]

void ballTransform() {

for each point P(x,y) in the plane

 if (P(x,y is inside the shape ‘S’){

/*update the height map for the sphere with center P(x,y) and radius =

P(x,y).disToclosestEdgeIn(S)*/

scanSphere(P(x,y),P(x,y).disToclosestEdgeIn(S));

}}

void scanSphere(pt O, float r)

{

 for each point ‘SP’ in the disc with center =O and

 radius ‘r’

 {

 if(height at ‘SP’ of sphere with center O and radius r

 is > the height in the height map)

 {

 Make the height of heightmap at SP= height at ‘SP’

 of sphere with center O and radius r;

 }

 }

}

Section V

In this section we show a sample shape which was drawn

using the above approach. Each of the following figures

show the intermediate state followed by the final 3D

triangle Mesh.

Figure 15: User Draws Curve

Figure 16: After Trimming we have manifold polyloops.

Figure 17: Intermediate step of Meshing of the point distribution.
The black edges are not yet used and the red ones have been used

for triangulation

Figure 14: Figures showing the stitching rule for broken
loops. The loops are represented by the series TTF and
TTTFTTTF. When we re-stitch the loops, we remove the F
edges and obtain a loop with TT_ and TTT_ and TTT_
where _ represents a new edge inserted to complete the
loop.

T

T

F T

F

F

T

T

T

T

T

 Page 9

Figure 18: Ball Transform

Figure 19: Final 3D Mesh formed by combining Ball transform and
point distribution

Section VI

Conclusion:
By this implementation, we have provided the user with

an easy and an intuitive way to create 3D shapes from

simple 2D curves. The user also has the flexibility to

create non-connected 2D curves which can be used to

create multiple 3D shapes (including Genus).

Our polyloop stitching algorithm preserves more holes

than the algorithm that was originally suggested in class

for implementation. It does have a drawback in the sense

that it doesn’t preserve the parity of the loops, but for

the current application, that doesn’t matter too much.

The triangulation algorithm functions well for most cases

and produces reasonably good results for concave

vertices too. But it has a drawback of taking a long time

to complete. A suitable modification for improving the

speed and hence the efficiency of the procedure can be

taken up as future work.

The bulge method produces good approximation of the

3D surface with a very simple algorithm. It can be further

improved by considering triangles instead of squares or

grids to compute the height of a particular point.

As an extension to this project we can generate the

corner table out of the triangle mesh and allow the user

do smoothing, subdividing and various other operations

on the mesh.

Improvements:
 The algorithms that are being used by us are not

optimized as of now. Consequently they take a

lot of time to process and display the

triangulation.

 There is no UI for the user to change the

parameters for re-sampling and the size of the

triangulation. But this is just a UI limitation and is

possible with the current code by changing the

variable in the accompanying code

 We could also try to triangulate the mesh in 3D.

References
[1] Dollins, S. C. (2002). Retrieved from Handy

Mathematics Facts for Graphics:

http://www.cs.brown.edu/~scd/facts.html

[2] Rossignac, J. Retrieved from CS6491 Foundations of

Computer Graphics, Modelling, and Animation:

http://www.gvu.gatech.edu/~jarek/courses/6491/

[3] Delaunay Triangulation

http://en.wikipedia.org/wiki/Delaunay_triangulation

[4]Tai, Zhang and Phong. Prototype Modelling from

Sketched Silhouettes based on Convolution Surfaces

[5] Jarek R. Rossignac. Solid and Physical Modelling.

[6] Paul Chew. Voronoi Diagram applet

http://www.cs.cornell.edu/Info/People/chew/Delaunay.

html

[7]Dey, Li and Ray.Polygonal Surface meshing with

Delaunay refinement.
[3] Teddy: A Sketching Interface for 3D Freeform

Design,Takeo Igarashi†, Satoshi Matsuoka‡, Hidehiko

Tanaka†University of Tokyo, ‡ Tokyo Institute of

Technology.

http://www.cs.brown.edu/~scd/facts.html
http://www.gvu.gatech.edu/~jarek/courses/6491/
http://en.wikipedia.org/wiki/Delaunay_triangulation
http://www.cs.cornell.edu/Info/People/chew/chew.html
http://www.cs.cornell.edu/Info/People/chew/Delaunay.html
http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

